Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 173: 115467, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006805

RESUMO

Hydraulic fracturing (HF), or "fracking," is the driving force behind the "shale gas revolution," completely transforming the United States energy industry over the last two decades. HF requires that 4-6 million gallons per well (15,000-23,000 m3/well) of water be pumped underground to stimulate the release of entrapped hydrocarbons from unconventional (i.e., shale or carbonate) formations. Estimated U.S. produced water volumes exceed 150 billion gallons/year across the industry from unconventional wells alone and are projected to grow for at least another two decades. Concerns over the environmental impact from accidental or incidental release of produced water from HF wells ("U-PW"), along with evolving regulatory and economic drivers, has spurred great interest in technological innovation to enhance U-PW recycling and reuse. In this review, we analyze U-PW quantity and composition based on the latest U.S. Geographical Survey data, identify key contamination metrics useful in tracking water quality improvement in the context of HF operations, and suggest "fit-for-purpose treatment" to enhance cost-effective regulatory compliance, water recovery/reuse, and resource valorization. Drawing on industrial practice and technoeconomic constraints, we further assess the challenges associated with U-PW treatment for onshore U.S. operations. Presented are opportunities for targeted end-uses of treated U-PW. We highlight emerging technologies that may enhance cost-effective U-PW management as HF activities grow and evolve in the coming decades.


Assuntos
Fraturamento Hidráulico , Campos de Petróleo e Gás , Objetivos , Gás Natural , Estados Unidos , Águas Residuárias , Poços de Água
2.
Environ Sci Process Impacts ; 21(2): 214-223, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30403211

RESUMO

The ability of different methods to analyze formaldehyde and other leachates from proppants was investigated under lab-simulated downhole conditions. These methods include high performance liquid chromatography (HPLC), headspace gas chromatography-vacuum ultraviolet spectroscopy (HS-GC-VUV), and headspace gas chromatography-mass spectrometry (HS-GC-MS). Two different types of resin-coated proppants, phenol-formaldehyde- and polyurethane-based, were examined. Each proppant was tested at different time intervals (1, 4, 15, 20, or 25 hours) to determine the timeframe for chemical dissolution. Analyses were performed at room temperature and heated (93 °C) to examine how temperature affected the concentration of leachates. Multiple matrices were examined to mimic conditions in subsurface environment including deionized water, a solution surrogate to mimic the ionic concentration of produced water, and recovered produced water. The complexity of these samples was further enhanced to simulate downhole conditions by the addition of shale core. The influence of matrix components on the analysis of formaldehyde was greatly correlated to the quantity of formaldehyde measured. Of the three techniques surveyed, HS-GC-MS was found to be better suited for the analysis of formaldehyde leachates in complex samples. It was found that phenol-formaldehyde resin coated proppants leached higher concentrations of formaldehyde than the polyurethane resin coated proppants.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Formaldeído/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrofotometria Ultravioleta/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...